
Kafka: a Distributed Messaging System for Log Processing
Jay Kreps

LinkedIn Corp.
 jkreps@linkedin.com

Neha Narkhede
LinkedIn Corp.

 nnarkhede@linkedin.com

Jun Rao
LinkedIn Corp.

jrao@linkedin.com

ABSTRACT
Log processing has become a critical component of the data
pipeline for consumer internet companies. We introduce Kafka, a
distributed messaging system that we developed for collecting and
delivering high volumes of log data with low latency. Our system
incorporates ideas from existing log aggregators and messaging
systems, and is suitable for both offline and online message
consumption. We made quite a few unconventional yet practical
design choices in Kafka to make our system efficient and scalable.
Our experimental results show that Kafka has superior
performance when compared to two popular messaging systems.
We have been using Kafka in production for some time and it is
processing hundreds of gigabytes of new data each day.

General Terms
Management, Performance, Design, Experimentation.

Keywords
messaging, distributed, log processing, throughput, online.

1. Introduction
There is a large amount of “log” data generated at any sizable
internet company. This data typically includes (1) user activity
events corresponding to logins, pageviews, clicks, “likes”,
sharing, comments, and search queries; (2) operational metrics
such as service call stack, call latency, errors, and system metrics
such as CPU, memory, network, or disk utilization on each
machine. Log data has long been a component of analytics used to
track user engagement, system utilization, and other metrics.
However recent trends in internet applications have made activity
data a part of the production data pipeline used directly in site
features. These uses include (1) search relevance, (2)
recommendations which may be driven by item popularity or co-
occurrence in the activity stream, (3) ad targeting and reporting,
and (4) security applications that protect against abusive behaviors
such as spam or unauthorized data scraping, and (5) newsfeed
features that aggregate user status updates or actions for their
“friends” or “connections” to read.

This production, real-time usage of log data creates new
challenges for data systems because its volume is orders of
magnitude larger than the “real” data. For example, search,
recommendations, and advertising often require computing

granular click-through rates, which generate log records not only
for every user click, but also for dozens of items on each page that
are not clicked. Every day, China Mobile collects 5–8TB of phone
call records [11] and Facebook gathers almost 6TB of various user
activity events [12].

Many early systems for processing this kind of data relied on
physically scraping log files off production servers for analysis. In
recent years, several specialized distributed log aggregators have
been built, including Facebook’s Scribe [6], Yahoo’s Data
Highway [4], and Cloudera’s Flume [3]. Those systems are
primarily designed for collecting and loading the log data into a
data warehouse or Hadoop [8] for offline consumption. At
LinkedIn (a social network site), we found that in addition to
traditional offline analytics, we needed to support most of the
real-time applications mentioned above with delays of no more
than a few seconds.

We have built a novel messaging system for log processing called
Kafka [18] that combines the benefits of traditional log
aggregators and messaging systems. On the one hand, Kafka is
distributed and scalable, and offers high throughput. On the other
hand, Kafka provides an API similar to a messaging system and
allows applications to consume log events in real time. Kafka has
been open sourced and used successfully in production at
LinkedIn for more than 6 months. It greatly simplifies our
infrastructure, since we can exploit a single piece of software for
both online and offline consumption of the log data of all types.
The rest of the paper is organized as follows. We revisit
traditional messaging systems and log aggregators in Section 2. In
Section 3, we describe the architecture of Kafka and its key design
principles. We describe our deployment of Kafka at LinkedIn in
Section 4 and the performance results of Kafka in Section 5. We
discuss future work and conclude in Section 6.

2. Related Work
Traditional enterprise messaging systems [1][7][15][17] have
existed for a long time and often play a critical role as an event
bus for processing asynchronous data flows. However, there are a
few reasons why they tend not to be a good fit for log processing.
First, there is a mismatch in features offered by enterprise
systems. Those systems often focus on offering a rich set of
delivery guarantees. For example, IBM Websphere MQ [7] has
transactional supports that allow an application to insert messages
into multiple queues atomically. The JMS [14] specification
allows each individual message to be acknowledged after
consumption, potentially out of order. Such delivery guarantees
are often overkill for collecting log data. For instance, losing a
few pageview events occasionally is certainly not the end of the
world. Those unneeded features tend to increase the complexity of
both the API and the underlying implementation of those systems.
Second, many systems do not focus as strongly on throughput as
their primary design constraint. For example, JMS has no API to
allow the producer to explicitly batch multiple messages into a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NetDB'11, Jun. 12, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0652-2/11/06…$10.00.

single request. This means each message requires a full TCP/IP
roundtrip, which is not feasible for the throughput requirements of
our domain. Third, those systems are weak in distributed support.
There is no easy way to partition and store messages on multiple
machines. Finally, many messaging systems assume near
immediate consumption of messages, so the queue of unconsumed
messages is always fairly small. Their performance degrades
significantly if messages are allowed to accumulate, as is the case
for offline consumers such as data warehousing applications that
do periodic large loads rather than continuous consumption.

A number of specialized log aggregators have been built over the
last few years. Facebook uses a system called Scribe. Each front-
end machine can send log data to a set of Scribe machines over
sockets. Each Scribe machine aggregates the log entries and
periodically dumps them to HDFS [9] or an NFS device. Yahoo’s
data highway project has a similar dataflow. A set of machines
aggregate events from the clients and roll out “minute” files,
which are then added to HDFS. Flume is a relatively new log
aggregator developed by Cloudera. It supports extensible “pipes”
and “sinks”, and makes streaming log data very flexible. It also
has more integrated distributed support. However, most of those
systems are built for consuming the log data offline, and often
expose implementation details unnecessarily (e.g. “minute files”)
to the consumer. Additionally, most of them use a “push” model
in which the broker forwards data to consumers. At LinkedIn, we
find the “pull” model more suitable for our applications since each
consumer can retrieve the messages at the maximum rate it can
sustain and avoid being flooded by messages pushed faster than it
can handle. The pull model also makes it easy to rewind a
consumer and we discuss this benefit at the end of Section 3.2.

More recently, Yahoo! Research developed a new distributed
pub/sub system called HedWig [13]. HedWig is highly scalable
and available, and offers strong durability guarantees. However, it
is mainly intended for storing the commit log of a data store.

3. Kafka Architecture and Design Principles
Because of limitations in existing systems, we developed a new
messaging-based log aggregator Kafka. We first introduce the
basic concepts in Kafka. A stream of messages of a particular type
is defined by a topic. A producer can publish messages to a topic.
The published messages are then stored at a set of servers called
brokers. A consumer can subscribe to one or more topics from the
brokers, and consume the subscribed messages by pulling data
from the brokers.
Messaging is conceptually simple, and we have tried to make the
Kafka API equally simple to reflect this. Instead of showing the
exact API, we present some sample code to show how the API is
used. The sample code of the producer is given below. A message
is defined to contain just a payload of bytes. A user can choose
her favorite serialization method to encode a message. For
efficiency, the producer can send a set of messages in a single
publish request.

To subscribe to a topic, a consumer first creates one or more
message streams for the topic. The messages published to that

topic will be evenly distributed into these sub-streams. The details
about how Kafka distributes the messages are described later in
Section 3.2. Each message stream provides an iterator interface
over the continual stream of messages being produced. The
consumer then iterates over every message in the stream and
processes the payload of the message. Unlike traditional iterators,
the message stream iterator never terminates. If there are currently
no more messages to consume, the iterator blocks until new
messages are published to the topic. We support both the point-to-
point delivery model in which multiple consumers jointly
consume a single copy of all messages in a topic, as well as the
publish/subscribe model in which multiple consumers each
retrieve its own copy of a topic.

The overall architecture of Kafka is shown in Figure 1. Since
Kafka is distributed in nature, an Kafka cluster typically consists
of multiple brokers. To balance load, a topic is divided into
multiple partitions and each broker stores one or more of those
partitions. Multiple producers and consumers can publish and
retrieve messages at the same time. In Section 3.1, we describe the
layout of a single partition on a broker and a few design choices
that we selected to make accessing a partition efficient. In Section
3.2, we describe how the producer and the consumer interact with
multiple brokers in a distributed setting. We discuss the delivery
guarantees of Kafka in Section 3.3.

3.1 Efficiency on a Single Partition
We made a few decisions in Kafka to make the system efficient.

Simple storage: Kafka has a very simple storage layout. Each
partition of a topic corresponds to a logical log. Physically, a log
is implemented as a set of segment files of approximately the
same size (e.g., 1GB). Every time a producer publishes a message
to a partition, the broker simply appends the message to the last
segment file. For better performance, we flush the segment files to
disk only after a configurable number of messages have been
published or a certain amount of time has elapsed. A message is
only exposed to the consumers after it is flushed.

 Sample producer code:
 producer = new Producer(…);
 message = new Message(“test message str”.getBytes());
 set = new MessageSet(message);
 producer.send(“topic1”, set);

 Sample consumer code:
 streams[] = Consumer.createMessageStreams(“topic1”, 1)
 for (message : streams[0]) {
 bytes = message.payload();
 // do something with the bytes
 }

BROKER 1
topic1/part1
 /part2
topic2/part1

producer producer

consumer consumer

Figure 1. Kafka Architecture

BROKER 2
topic1/part1
 /part2
topic2/part1

BROKER 3
topic1/part1
 /part2
topic2/part1

pratyush
Highlight

pratyush
Highlight

Unlike typical messaging systems, a message stored in Kafka
doesn’t have an explicit message id. Instead, each message is
addressed by its logical offset in the log. This avoids the overhead
of maintaining auxiliary, seek-intensive random-access index
structures that map the message ids to the actual message
locations. Note that our message ids are increasing but not
consecutive. To compute the id of the next message, we have to
add the length of the current message to its id. From now on, we
will use message ids and offsets interchangeably.

A consumer always consumes messages from a particular
partition sequentially. If the consumer acknowledges a particular
message offset, it implies that the consumer has received all
messages prior to that offset in the partition. Under the covers, the
consumer is issuing asynchronous pull requests to the broker to
have a buffer of data ready for the application to consume. Each
pull request contains the offset of the message from which the
consumption begins and an acceptable number of bytes to fetch.
Each broker keeps in memory a sorted list of offsets, including the
offset of the first message in every segment file. The broker
locates the segment file where the requested message resides by
searching the offset list, and sends the data back to the consumer.
After a consumer receives a message, it computes the offset of the
next message to consume and uses it in the next pull request. The
layout of an Kafka log and the in-memory index is depicted in
Figure 2. Each box shows the offset of a message.

Efficient transfer: We are very careful about transferring data in
and out of Kafka. Earlier, we have shown that the producer can
submit a set of messages in a single send request. Although the
end consumer API iterates one message at a time, under the
covers, each pull request from a consumer also retrieves multiple
messages up to a certain size, typically hundreds of kilobytes.

Another unconventional choice that we made is to avoid explicitly
caching messages in memory at the Kafka layer. Instead, we rely
on the underlying file system page cache. This has the main
benefit of avoiding double buffering---messages are only cached
in the page cache. This has the additional benefit of retaining
warm cache even when a broker process is restarted. Since Kafka
doesn’t cache messages in process at all, it has very little overhead
in garbage collecting its memory, making efficient
implementation in a VM-based language feasible. Finally, since
both the producer and the consumer access the segment files

sequentially, with the consumer often lagging the producer by a
small amount, normal operating system caching heuristics are
very effective (specifically write-through caching and read-
ahead). We have found that both the production and the
consumption have consistent performance linear to the data size,
up to many terabytes of data.

In addition we optimize the network access for consumers. Kafka
is a multi-subscriber system and a single message may be
consumed multiple times by different consumer applications. A
typical approach to sending bytes from a local file to a remote
socket involves the following steps: (1) read data from the storage
media to the page cache in an OS, (2) copy data in the page cache
to an application buffer, (3) copy application buffer to another
kernel buffer, (4) send the kernel buffer to the socket. This
includes 4 data copying and 2 system calls. On Linux and other
Unix operating systems, there exists a sendfile API [5] that can
directly transfer bytes from a file channel to a socket channel.
This typically avoids 2 of the copies and 1 system call introduced
in steps (2) and (3). Kafka exploits the sendfile API to efficiently
deliver bytes in a log segment file from a broker to a consumer.

Stateless broker: Unlike most other messaging systems, in
Kafka, the information about how much each consumer has
consumed is not maintained by the broker, but by the consumer
itself. Such a design reduces a lot of the complexity and the
overhead on the broker. However, this makes it tricky to delete a
message, since a broker doesn’t know whether all subscribers
have consumed the message. Kafka solves this problem by using a
simple time-based SLA for the retention policy. A message is
automatically deleted if it has been retained in the broker longer
than a certain period, typically 7 days. This solution works well in
practice. Most consumers, including the offline ones, finish
consuming either daily, hourly, or in real-time. The fact that the
performance of Kafka doesn’t degrade with a larger data size
makes this long retention feasible.

There is an important side benefit of this design. A consumer can
deliberately rewind back to an old offset and re-consume data.
This violates the common contract of a queue, but proves to be an
essential feature for many consumers. For example, when there is
an error in application logic in the consumer, the application can
re-play certain messages after the error is fixed. This is
particularly important to ETL data loads into our data warehouse
or Hadoop system. As another example, the consumed data may
be flushed to a persistent store only periodically (e.g, a full-text
indexer). If the consumer crashes, the unflushed data is lost. In
this case, the consumer can checkpoint the smallest offset of the
unflushed messages and re-consume from that offset when it’s
restarted. We note that rewinding a consumer is much easier to
support in the pull model than the push model.

3.2 Distributed Coordination
We now describe how the producers and the consumers behave in
a distributed setting. Each producer can publish a message to
either a randomly selected partition or a partition semantically
determined by a partitioning key and a partitioning function. We
will focus on how the consumers interact with the brokers.

Kafka has the concept of consumer groups. Each consumer group
consists of one or more consumers that jointly consume a set of
subscribed topics, i.e., each message is delivered to only one of
the consumers within the group. Different consumer groups each
independently consume the full set of subscribed messages and no
coordination is needed across consumer groups. The consumers

Figure 2. Kafka log

 .

msg-00000000000
msg-00000000215

msg-00014516809

msg-02050706778
msg-02050706945

msg-02614516809

msg-00000000000
msg-00014517018
msg-00030706778

msg-02050706778

delete

append

segment file 1

segment file N

reads

in-memory index

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

within the same group can be in different processes or on different
machines. Our goal is to divide the messages stored in the brokers
evenly among the consumers, without introducing too much
coordination overhead.

Our first decision is to make a partition within a topic the smallest
unit of parallelism. This means that at any given time, all
messages from one partition are consumed only by a single
consumer within each consumer group. Had we allowed multiple
consumers to simultaneously consume a single partition, they
would have to coordinate who consumes what messages, which
necessitates locking and state maintenance overhead. In contrast,
in our design consuming processes only need co-ordinate when
the consumers rebalance the load, an infrequent event. In order for
the load to be truly balanced, we require many more partitions in a
topic than the consumers in each group. We can easily achieve
this by over partitioning a topic.

The second decision that we made is to not have a central
“master” node, but instead let consumers coordinate among
themselves in a decentralized fashion. Adding a master can
complicate the system since we have to further worry about
master failures. To facilitate the coordination, we employ a highly
available consensus service Zookeeper [10]. Zookeeper has a
very simple, file system like API. One can create a path, set the
value of a path, read the value of a path, delete a path, and list the
children of a path. It does a few more interesting things: (a) one
can register a watcher on a path and get notified when the children
of a path or the value of a path has changed; (b) a path can be
created as ephemeral (as oppose to persistent), which means that
if the creating client is gone, the path is automatically removed by
the Zookeeper server; (c) zookeeper replicates its data to multiple
servers, which makes the data highly reliable and available.

Kafka uses Zookeeper for the following tasks: (1) detecting the
addition and the removal of brokers and consumers, (2) triggering
a rebalance process in each consumer when the above events
happen, and (3) maintaining the consumption relationship and
keeping track of the consumed offset of each partition.
Specifically, when each broker or consumer starts up, it stores its
information in a broker or consumer registry in Zookeeper. The
broker registry contains the broker’s host name and port, and the
set of topics and partitions stored on it. The consumer registry
includes the consumer group to which a consumer belongs and the
set of topics that it subscribes to. Each consumer group is
associated with an ownership registry and an offset registry in
Zookeeper. The ownership registry has one path for every
subscribed partition and the path value is the id of the consumer
currently consuming from this partition (we use the terminology
that the consumer owns this partition). The offset registry stores
for each subscribed partition, the offset of the last consumed
message in the partition.

The paths created in Zookeeper are ephemeral for the broker
registry, the consumer registry and the ownership registry, and
persistent for the offset registry. If a broker fails, all partitions on
it are automatically removed from the broker registry. The failure
of a consumer causes it to lose its entry in the consumer registry
and all partitions that it owns in the ownership registry. Each
consumer registers a Zookeeper watcher on both the broker
registry and the consumer registry, and will be notified whenever
a change in the broker set or the consumer group occurs.

During the initial startup of a consumer or when the consumer is
notified about a broker/consumer change through the watcher, the
consumer initiates a rebalance process to determine the new

subset of partitions that it should consume from. The process is
described in Algorithm 1. By reading the broker and the consumer
registry from Zookeeper, the consumer first computes the set (PT)
of partitions available for each subscribed topic T and the set (CT)
of consumers subscribing to T. It then range-partitions PT into |CT|
chunks and deterministically picks one chunk to own. For each
partition the consumer picks, it writes itself as the new owner of
the partition in the ownership registry. Finally, the consumer
begins a thread to pull data from each owned partition, starting
from the offset stored in the offset registry. As messages get
pulled from a partition, the consumer periodically updates the
latest consumed offset in the offset registry.

When there are multiple consumers within a group, each of them
will be notified of a broker or a consumer change. However, the
notification may come at slightly different times at the consumers.
So, it is possible that one consumer tries to take ownership of a
partition still owned by another consumer. When this happens, the
first consumer simply releases all the partitions that it currently
owns, waits a bit and retries the rebalance process. In practice, the
rebalance process often stabilizes after only a few retries.

When a new consumer group is created, no offsets are available in
the offset registry. In this case, the consumers will begin with
either the smallest or the largest offset (depending on a
configuration) available on each subscribed partition, using an
API that we provide on the brokers.

3.3 Delivery Guarantees
In general, Kafka only guarantees at-least-once delivery. Exactly-
once delivery typically requires two-phase commits and is not
necessary for our applications. Most of the time, a message is
delivered exactly once to each consumer group. However, in the
case when a consumer process crashes without a clean shutdown,
the consumer process that takes over those partitions owned by
the failed consumer may get some duplicate messages that are
after the last offset successfully committed to zookeeper. If an
application cares about duplicates, it must add its own de-
duplication logic, either using the offsets that we return to the
consumer or some unique key within the message. This is usually
a more cost-effective approach than using two-phase commits.

Kafka guarantees that messages from a single partition are
delivered to a consumer in order. However, there is no guarantee
on the ordering of messages coming from different partitions.

Algorithm 1: rebalance process for consumer Ci in group G
For each topic T that Ci subscribes to {
 remove partitions owned by Ci from the ownership registry
 read the broker and the consumer registries from Zookeeper
 compute PT = partitions available in all brokers under topic T
 compute CT = all consumers in G that subscribe to topic T
 sort PT and CT
 let j be the index position of Ci in CT and let N = |PT|/|CT|
 assign partitions from j*N to (j+1)*N - 1 in PT to consumer Ci
 for each assigned partition p {
 set the owner of p to Ci in the ownership registry
 let Op = the offset of partition p stored in the offset registry
 invoke a thread to pull data in partition p from offset Op
 }
}

To avoid log corruption, Kafka stores a CRC for each message in
the log. If there is any I/O error on the broker, Kafka runs a
recovery process to remove those messages with inconsistent
CRCs. Having the CRC at the message level also allows us to
check network errors after a message is produced or consumed.

If a broker goes down, any message stored on it not yet consumed
becomes unavailable. If the storage system on a broker is
permanently damaged, any unconsumed message is lost forever.
In the future, we plan to add built-in replication in Kafka to
redundantly store each message on multiple brokers.

4. Kafka Usage at LinkedIn
In this section, we describe how we use Kafka at LinkedIn. Figure
3 shows a simplified version of our deployment. We have one
Kafka cluster co-located with each datacenter where our user-
facing services run. The frontend services generate various kinds
of log data and publish it to the local Kafka brokers in batches.
We rely on a hardware load-balancer to distribute the publish
requests to the set of Kafka brokers evenly. The online consumers
of Kafka run in services within the same datacenter.

We also deploy a cluster of Kafka in a separate datacenter for
offline analysis, located geographically close to our Hadoop
cluster and other data warehouse infrastructure. This instance of
Kafka runs a set of embedded consumers to pull data from the
Kafka instances in the live datacenters. We then run data load jobs
to pull data from this replica cluster of Kafka into Hadoop and our
data warehouse, where we run various reporting jobs and
analytical process on the data. We also use this Kafka cluster for
prototyping and have the ability to run simple scripts against the
raw event streams for ad hoc querying. Without too much tuning,
the end-to-end latency for the complete pipeline is about 10
seconds on average, good enough for our requirements.

Currently, Kafka accumulates hundreds of gigabytes of data and
close to a billion messages per day, which we expect will grow
significantly as we finish converting legacy systems to take
advantage of Kafka. More types of messages will be added in the
future. The rebalance process is able to automatically redirect the

consumption when the operation staffs start or stop brokers for
software or hardware maintenance.

Our tracking also includes an auditing system to verify that there
is no data loss along the whole pipeline. To facilitate that, each
message carries the timestamp and the server name when they are
generated. We instrument each producer such that it periodically
generates a monitoring event, which records the number of
messages published by that producer for each topic within a fixed
time window. The producer publishes the monitoring events to
Kafka in a separate topic. The consumers can then count the
number of messages that they have received from a given topic
and validate those counts with the monitoring events to validate
the correctness of data.

Loading into the Hadoop cluster is accomplished by implementing
a special Kafka input format that allows MapReduce jobs to
directly read data from Kafka. A MapReduce job loads the raw
data and then groups and compresses it for efficient processing in
the future. The stateless broker and client-side storage of message
offsets again come into play here, allowing the MapReduce task
management (which allows tasks to fail and be restarted) to
handle the data load in a natural way without duplicating or losing
messages in the event of a task restart. Both data and offsets are
stored in HDFS only on the successful completion of the job.

We chose to use Avro [2] as our serialization protocol since it is
efficient and supports schema evolution. For each message, we
store the id of its Avro schema and the serialized bytes in the
payload. This schema allows us to enforce a contract to ensure
compatibility between data producers and consumers. We use a
lightweight schema registry service to map the schema id to the
actual schema. When a consumer gets a message, it looks up in
the schema registry to retrieve the schema, which is used to
decode the bytes into an object (this lookup need only be done
once per schema, since the values are immutable).

5. Experimental Results
We conducted an experimental study, comparing the performance
of Kafka with Apache ActiveMQ v5.4 [1], a popular open-source
implementation of JMS, and RabbitMQ v2.4 [16], a message
system known for its performance. We used ActiveMQ’s default
persistent message store KahaDB. Although not presented here,
we also tested an alternative AMQ message store and found its
performance very similar to that of KahaDB. Whenever possible,
we tried to use comparable settings in all systems.
We ran our experiments on 2 Linux machines, each with 8 2GHz
cores, 16GB of memory, 6 disks with RAID 10. The two
machines are connected with a 1Gb network link. One of the
machines was used as the broker and the other machine was used
as the producer or the consumer.
Producer Test: We configured the broker in all systems to
asynchronously flush messages to its persistence store. For each
system, we ran a single producer to publish a total of 10 million
messages, each of 200 bytes. We configured the Kafka producer
to send messages in batches of size 1 and 50. ActiveMQ and
RabbitMQ don’t seem to have an easy way to batch messages and
we assume that it used a batch size of 1. The results are shown in
Figure 4. The x-axis represents the amount of data sent to the
broker over time in MB, and the y-axis corresponds to the
producer throughput in messages per second. On average, Kafka
can publish messages at the rate of 50,000 and 400,000 messages
per second for batch size of 1 and 50, respectively. These numbers

frontend frontend frontend

 Load balancer

realtime
service

realtime
service

 broker

Hadoop DWH

 broker

main datacenter analysis datacenter

Figure 3. Kafka Deployment

are orders of magnitude higher than that of ActiveMQ, and at least
2 times higher than RabbitMQ.
There are a few reasons why Kafka performed much better. First,
the Kafka producer currently doesn’t wait for acknowledgements
from the broker and sends messages as faster as the broker can
handle. This significantly increased the throughput of the
publisher. With a batch size of 50, a single Kafka producer almost
saturated the 1Gb link between the producer and the broker. This
is a valid optimization for the log aggregation case, as data must
be sent asynchronously to avoid introducing any latency into the
live serving of traffic. We note that without acknowledging the
producer, there is no guarantee that every published message is
actually received by the broker. For many types of log data, it is
desirable to trade durability for throughput, as long as the number
of dropped messages is relatively small. However, we do plan to
address the durability issue for more critical data in the future.
Second, Kafka has a more efficient storage format. On average,
each message had an overhead of 9 bytes in Kafka, versus 144
bytes in ActiveMQ. This means that ActiveMQ was using 70%
more space than Kafka to store the same set of 10 million
messages. One overhead in ActiveMQ came from the heavy
message header, required by JMS. Another overhead was the cost
of maintaining various indexing structures. We observed that one
of the busiest threads in ActiveMQ spent most of its time
accessing a B-Tree to maintain message metadata and state.
Finally, batching greatly improved the throughput by amortizing
the RPC overhead. In Kafka, a batch size of 50 messages
improved the throughput by almost an order of magnitude.
Consumer Test: In the second experiment, we tested the
performance of the consumer. Again, for all systems, we used a
single consumer to retrieve a total of 10 millions messages. We
configured all systems so that each pull request should prefetch
approximately the same amount data---up to 1000 messages or
about 200KB. For both ActiveMQ and RabbitMQ, we set the
consumer acknowledge mode to be automatic. Since all messages
fit in memory, all systems were serving data from the page cache
of the underlying file system or some in-memory buffers. The
results are presented in Figure 5.
On average, Kafka consumed 22,000 messages per second, more
than 4 times that of ActiveMQ and RabbitMQ. We can think of
several reasons. First, since Kafka has a more efficient storage
format, fewer bytes were transferred from the broker to the

consumer in Kafka. Second, the broker in both ActiveMQ and
RabbitMQ had to maintain the delivery state of every message.
We observed that one of the ActiveMQ threads was busy writing
KahaDB pages to disks during this test. In contrast, there were no
disk write activities on the Kafka broker. Finally, by using the
sendfile API, Kafka reduces the transmission overhead.
We close the section by noting that the purpose of the experiment
is not to show that other messaging systems are inferior to Kafka.
After all, both ActiveMQ and RabbitMQ have more features than
Kafka. The main point is to illustrate the potential performance
gain that can be achieved by a specialized system.

6. Conclusion and Future Works
We present a novel system called Kafka for processing huge
volume of log data streams. Like a messaging system, Kafka
employs a pull-based consumption model that allows an
application to consume data at its own rate and rewind the
consumption whenever needed. By focusing on log processing
applications, Kafka achieves much higher throughput than
conventional messaging systems. It also provides integrated
distributed support and can scale out. We have been using Kafka
successfully at LinkedIn for both offline and online applications.

There are a number of directions that we’d like to pursue in the
future. First, we plan to add built-in replication of messages across
multiple brokers to allow durability and data availability
guarantees even in the case of unrecoverable machine failures.
We’d like to support both asynchronous and synchronous
replication models to allow some tradeoff between producer
latency and the strength of the guarantees provided. An
application can choose the right level of redundancy based on its
requirement on durability, availability and throughput. Second, we
want to add some stream processing capability in Kafka. After
retrieving messages from Kafka, real time applications often
perform similar operations such as window-based counting and
joining each message with records in a secondary store or with
messages in another stream. At the lowest level this is supported
by semantically partitioning messages on the join key during
publishing so that all messages sent with a particular key go to the
same partition and hence arrive at a single consumer process. This
provides the foundation for processing distributed streams across
a cluster of consumer machines. On top of this we feel a library of
helpful stream utilities, such as different windowing functions or
join techniques will be beneficial to this kind of applications.

Figure 4. Producer Performance Figure 5. Consumer Performance

7. REFERENCES
[1] http://activemq.apache.org/
[2] http://avro.apache.org/
[3] Cloudera’s Flume, https://github.com/cloudera/flume
[4] http://developer.yahoo.com/blogs/hadoop/posts/2010/06/ena

bling_hadoop_batch_processi_1/
[5] Efficient data transfer through zero copy:

https://www.ibm.com/developerworks/linux/library/j-
zerocopy/

[6] Facebook’s Scribe,
http://www.facebook.com/note.php?note_id=32008268919

[7] IBM Websphere MQ: http://www-
01.ibm.com/software/integration/wmq/

[8] http://hadoop.apache.org/
[9] http://hadoop.apache.org/hdfs/

[10] http://hadoop.apache.org/zookeeper/
[11] http://www.slideshare.net/cloudera/hw09-hadoop-based-

data-mining-platform-for-the-telecom-industry
[12] http://www.slideshare.net/prasadc/hive-percona-2009
[13] https://issues.apache.org/jira/browse/ZOOKEEPER-775
[14] JAVA Message Service:

http://download.oracle.com/javaee/1.3/jms/tutorial/1_3_1-
fcs/doc/jms_tutorialTOC.html.

[15] Oracle Enterprise Messaging Service:
http://www.oracle.com/technetwork/middleware/ias/index-
093455.html

[16] http://www.rabbitmq.com/
[17] TIBCO Enterprise Message Service:

http://www.tibco.com/products/soa/messaging/
[18] Kafka, http://sna-projects.com/kafka/

