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ABSTRACT 
Log processing has become a critical component of the data 
pipeline for consumer internet companies. We introduce Kafka, a 
distributed messaging system that we developed for collecting and 
delivering high volumes of log data with low latency. Our system 
incorporates ideas from existing log aggregators and messaging 
systems, and is suitable for both offline and online message 
consumption. We made quite a few unconventional yet practical 
design choices in Kafka to make our system efficient and scalable. 
Our experimental results show that Kafka has superior 
performance when compared to two popular messaging systems. 
We have been using Kafka in production for some time and it is 
processing hundreds of gigabytes of new data each day. 

General Terms 
Management, Performance, Design, Experimentation. 

Keywords 
messaging, distributed, log processing, throughput, online. 

1. Introduction 
There is a large amount of “log” data generated at any sizable 
internet company. This data typically includes (1) user activity 
events corresponding to logins, pageviews, clicks, “likes”, 
sharing, comments, and search queries; (2) operational metrics 
such as service call stack, call latency, errors, and system metrics 
such as CPU, memory, network, or disk utilization on each 
machine. Log data has long been a component of analytics used to 
track user engagement, system utilization, and other metrics. 
However recent trends in internet applications have made activity 
data a part of the production data pipeline used directly in site 
features. These uses include (1) search relevance, (2) 
recommendations which may be driven by item popularity or co-
occurrence in the activity stream, (3) ad targeting and reporting, 
and (4) security applications that protect against abusive behaviors 
such as spam or unauthorized data scraping, and (5) newsfeed 
features that aggregate user status updates or actions for their 
“friends” or “connections” to read. 

This production, real-time usage of log data creates new 
challenges for data systems because its volume is orders of 
magnitude larger than the “real” data. For example, search, 
recommendations, and advertising often require computing 

granular click-through rates, which generate log records not only 
for every user click, but also for dozens of items on each page that 
are not clicked. Every day, China Mobile collects 5–8TB of phone 
call records [11] and Facebook gathers almost 6TB of various user 
activity events [12].  

Many early systems for processing this kind of data relied on 
physically scraping log files off production servers for analysis. In 
recent years, several specialized distributed log aggregators have 
been built, including Facebook’s Scribe [6], Yahoo’s Data 
Highway [4], and Cloudera’s Flume [3]. Those systems are 
primarily designed for collecting and loading the log data into a 
data warehouse or Hadoop [8] for offline consumption. At 
LinkedIn (a social network site), we found that in addition to 
traditional offline analytics, we needed to support most of the 
real-time applications mentioned above with delays of no more 
than a few seconds. 

We have built a novel messaging system for log processing called 
Kafka [18] that combines the benefits of traditional log 
aggregators and messaging systems. On the one hand, Kafka is 
distributed and scalable, and offers high throughput. On the other 
hand, Kafka provides an API similar to a messaging system and 
allows applications to consume log events in real time. Kafka has 
been open sourced and used successfully in production at 
LinkedIn for more than 6 months. It greatly simplifies our 
infrastructure, since we can exploit a single piece of software for 
both online and offline consumption of the log data of all types. 
The rest of the paper is organized as follows. We revisit 
traditional messaging systems and log aggregators in Section 2. In 
Section 3, we describe the architecture of Kafka and its key design 
principles. We describe our deployment of Kafka at LinkedIn in 
Section 4 and the performance results of Kafka in Section 5. We 
discuss future work and conclude in Section 6. 

2. Related Work 
Traditional enterprise messaging systems [1][7][15][17] have 
existed for a long time and often play a critical role as an event 
bus for processing asynchronous data flows. However, there are a 
few reasons why they tend not to be a good fit for log processing. 
First, there is a mismatch in features offered by enterprise 
systems. Those systems often focus on offering a rich set of 
delivery guarantees. For example, IBM Websphere MQ [7] has 
transactional supports that allow an application to insert messages 
into multiple queues atomically. The JMS [14] specification 
allows each individual message to be acknowledged after 
consumption, potentially out of order. Such delivery guarantees 
are often overkill for collecting log data. For instance, losing a 
few pageview events occasionally is certainly not the end of the 
world. Those unneeded features tend to increase the complexity of 
both the API and the underlying implementation of those systems. 
Second, many systems do not focus as strongly on throughput as 
their primary design constraint. For example, JMS has no API to 
allow the producer to explicitly batch multiple messages into a 
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single request. This means each message requires a full TCP/IP 
roundtrip, which is not feasible for the throughput requirements of 
our domain. Third, those systems are weak in distributed support. 
There is no easy way to partition and store messages on multiple 
machines. Finally, many messaging systems assume near 
immediate consumption of messages, so the queue of unconsumed 
messages is always fairly small. Their performance degrades 
significantly if messages are allowed to accumulate, as is the case 
for offline consumers such as data warehousing applications that 
do periodic large loads rather than continuous consumption. 

A number of specialized log aggregators have been built over the 
last few years. Facebook uses a system called Scribe. Each front-
end machine can send log data to a set of Scribe machines over 
sockets. Each Scribe machine aggregates the log entries and 
periodically dumps them to HDFS [9] or an NFS device. Yahoo’s 
data highway project has a similar dataflow. A set of machines 
aggregate events from the clients and roll out “minute” files, 
which are then added to HDFS. Flume is a relatively new log 
aggregator developed by Cloudera. It supports extensible “pipes” 
and “sinks”, and makes streaming log data very flexible. It also 
has more integrated distributed support. However, most of those 
systems are built for consuming the log data offline, and often 
expose implementation details unnecessarily (e.g. “minute files”) 
to the consumer. Additionally, most of them use a “push” model 
in which the broker forwards data to consumers. At LinkedIn, we 
find the “pull” model more suitable for our applications since each 
consumer can retrieve the messages at the maximum rate it can 
sustain and avoid being flooded by messages pushed faster than it 
can handle. The pull model also makes it easy to rewind a 
consumer and we discuss this benefit at the end of Section 3.2. 

More recently, Yahoo! Research developed a new distributed 
pub/sub system called HedWig [13]. HedWig is highly scalable 
and available, and offers strong durability guarantees. However, it 
is mainly intended for storing the commit log of a data store. 

3. Kafka Architecture and Design Principles 
Because of limitations in existing systems, we developed a new 
messaging-based log aggregator Kafka. We first introduce the 
basic concepts in Kafka. A stream of messages of a particular type 
is defined by a topic. A producer can publish messages to a topic. 
The published messages are then stored at a set of servers called 
brokers. A consumer can subscribe to one or more topics from the 
brokers, and consume the subscribed messages by pulling data 
from the brokers. 
Messaging is conceptually simple, and we have tried to make the 
Kafka API equally simple to reflect this. Instead of showing the 
exact API, we present some sample code to show how the API is 
used. The sample code of the producer is given below. A message 
is defined to contain just a payload of bytes. A user can choose 
her favorite serialization method to encode a message. For 
efficiency, the producer can send a set of messages in a single 
publish request. 

To subscribe to a topic, a consumer first creates one or more 
message streams for the topic. The messages published to that 

topic will be evenly distributed into these sub-streams. The details 
about how Kafka distributes the messages are described later in 
Section 3.2. Each message stream provides an iterator interface 
over the continual stream of messages being produced. The 
consumer then iterates over every message in the stream and 
processes the payload of the message. Unlike traditional iterators, 
the message stream iterator never terminates. If there are currently 
no more messages to consume, the iterator blocks until new 
messages are published to the topic. We support both the point-to-
point delivery model in which multiple consumers jointly 
consume a single copy of all messages in a topic, as well as the 
publish/subscribe model in which multiple consumers each 
retrieve its own copy of a topic.  

The overall architecture of Kafka is shown in Figure 1. Since 
Kafka is distributed in nature, an Kafka cluster typically consists 
of multiple brokers. To balance load, a topic is divided into 
multiple partitions and each broker stores one or more of those 
partitions. Multiple producers and consumers can publish and 
retrieve messages at the same time. In Section 3.1, we describe the 
layout of a single partition on a broker and a few design choices 
that we selected to make accessing a partition efficient. In Section 
3.2, we describe how the producer and the consumer interact with 
multiple brokers in a distributed setting. We discuss the delivery 
guarantees of Kafka in Section 3.3. 

3.1 Efficiency on a Single Partition 
We made a few decisions in Kafka to make the system efficient.  

Simple storage: Kafka has a very simple storage layout. Each 
partition of a topic corresponds to a logical log. Physically, a log 
is implemented as a set of segment files of approximately the 
same size (e.g., 1GB). Every time a producer publishes a message 
to a partition, the broker simply appends the message to the last 
segment file. For better performance, we flush the segment files to 
disk only after a configurable number of messages have been 
published or a certain amount of time has elapsed. A message is 
only exposed to the consumers after it is flushed. 

 Sample producer code: 
  producer = new Producer(…); 
  message = new Message(“test message str”.getBytes()); 
  set = new MessageSet(message); 
  producer.send(“topic1”, set); 

 Sample consumer code:  
  streams[] = Consumer.createMessageStreams(“topic1”, 1) 
  for (message : streams[0]) { 
    bytes = message.payload(); 
    // do something with the bytes  
  } 
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Figure 1. Kafka Architecture 
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Unlike typical messaging systems, a message stored in Kafka 
doesn’t have an explicit message id. Instead, each message is 
addressed by its logical offset in the log. This avoids the overhead 
of maintaining auxiliary, seek-intensive random-access index 
structures that map the message ids to the actual message 
locations. Note that our message ids are increasing but not 
consecutive. To compute the id of the next message, we have to 
add the length of the current message to its id. From now on, we 
will use message ids and offsets interchangeably. 

A consumer always consumes messages from a particular 
partition sequentially. If the consumer acknowledges a particular 
message offset, it implies that the consumer has received all 
messages prior to that offset in the partition. Under the covers, the 
consumer is issuing asynchronous pull requests to the broker to 
have a buffer of data ready for the application to consume. Each 
pull request contains the offset of the message from which the 
consumption begins and an acceptable number of bytes to fetch. 
Each broker keeps in memory a sorted list of offsets, including the 
offset of the first message in every segment file. The broker 
locates the segment file where the requested message resides by 
searching the offset list, and sends the data back to the consumer. 
After a consumer receives a message, it computes the offset of the 
next message to consume and uses it in the next pull request. The 
layout of an Kafka log and the in-memory index is depicted in 
Figure 2. Each box shows the offset of a message. 

Efficient transfer: We are very careful about transferring data in 
and out of Kafka. Earlier, we have shown that the producer can 
submit a set of messages in a single send request. Although the 
end consumer API iterates one message at a time, under the 
covers, each pull request from a consumer also retrieves multiple 
messages up to a certain size, typically hundreds of kilobytes. 

Another unconventional choice that we made is to avoid explicitly 
caching messages in memory at the Kafka layer. Instead, we rely 
on the underlying file system page cache. This has the main 
benefit of avoiding double buffering---messages are only cached 
in the page cache. This has the additional benefit of retaining 
warm cache even when a broker process is restarted. Since Kafka 
doesn’t cache messages in process at all, it has very little overhead 
in garbage collecting its memory, making efficient 
implementation in a VM-based language feasible. Finally, since 
both the producer and the consumer access the segment files 

sequentially, with the consumer often lagging the producer by a 
small amount, normal operating system caching heuristics are 
very effective (specifically write-through caching and read-
ahead). We have found that both the production and the 
consumption have consistent performance linear to the data size, 
up to many terabytes of data. 

In addition we optimize the network access for consumers. Kafka 
is a multi-subscriber system and a single message may be 
consumed multiple times by different consumer applications. A 
typical approach to sending bytes from a local file to a remote 
socket involves the following steps: (1) read data from the storage 
media to the page cache in an OS, (2) copy data in the page cache 
to an application buffer, (3) copy application buffer to another 
kernel buffer, (4) send the kernel buffer to the socket. This 
includes 4 data copying and 2 system calls. On Linux and other 
Unix operating systems, there exists a sendfile API [5] that can 
directly transfer bytes from a file channel to a socket channel. 
This typically avoids 2 of the copies and 1 system call introduced 
in steps (2) and (3). Kafka exploits the sendfile API to efficiently 
deliver bytes in a log segment file from a broker to a consumer. 

Stateless broker: Unlike most other messaging systems, in 
Kafka, the information about how much each consumer has 
consumed is not maintained by the broker, but by the consumer 
itself. Such a design reduces a lot of the complexity and the 
overhead on the broker. However, this makes it tricky to delete a 
message, since a broker doesn’t know whether all subscribers 
have consumed the message. Kafka solves this problem by using a 
simple time-based SLA for the retention policy. A message is 
automatically deleted if it has been retained in the broker longer 
than a certain period, typically 7 days. This solution works well in 
practice. Most consumers, including the offline ones, finish 
consuming either daily, hourly, or in real-time. The fact that the 
performance of Kafka doesn’t degrade with a larger data size 
makes this long retention feasible. 

There is an important side benefit of this design. A consumer can 
deliberately rewind back to an old offset and re-consume data. 
This violates the common contract of a queue, but proves to be an 
essential feature for many consumers. For example, when there is 
an error in application logic in the consumer, the application can 
re-play certain messages after the error is fixed. This is 
particularly important to ETL data loads into our data warehouse 
or Hadoop system. As another example, the consumed data may 
be flushed to a persistent store only periodically (e.g, a full-text 
indexer). If the consumer crashes, the unflushed data is lost. In 
this case, the consumer can checkpoint the smallest offset of the 
unflushed messages and re-consume from that offset when it’s 
restarted. We note that rewinding a consumer is much easier to 
support in the pull model than the push model. 

3.2 Distributed Coordination 
We now describe how the producers and the consumers behave in 
a distributed setting. Each producer can publish a message to 
either a randomly selected partition or a partition semantically 
determined by a partitioning key and a partitioning function. We 
will focus on how the consumers interact with the brokers. 

Kafka has the concept of consumer groups. Each consumer group 
consists of one or more consumers that jointly consume a set of 
subscribed topics, i.e., each message is delivered to only one of 
the consumers within the group. Different consumer groups each 
independently consume the full set of subscribed messages and no 
coordination is needed across consumer groups. The consumers 
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within the same group can be in different processes or on different 
machines. Our goal is to divide the messages stored in the brokers 
evenly among the consumers, without introducing too much 
coordination overhead. 

Our first decision is to make a partition within a topic the smallest 
unit of parallelism. This means that at any given time, all 
messages from one partition are consumed only by a single 
consumer within each consumer group. Had we allowed multiple 
consumers to simultaneously consume a single partition, they 
would have to coordinate who consumes what messages, which 
necessitates locking and state maintenance overhead. In contrast, 
in our design consuming processes only need co-ordinate when 
the consumers rebalance the load, an infrequent event. In order for 
the load to be truly balanced, we require many more partitions in a 
topic than the consumers in each group. We can easily achieve 
this by over partitioning a topic. 

The second decision that we made is to not have a central 
“master” node, but instead let consumers coordinate among 
themselves in a decentralized fashion. Adding a master can 
complicate the system since we have to further worry about 
master failures. To facilitate the coordination, we employ a highly 
available consensus service Zookeeper [10].  Zookeeper has a 
very simple, file system like API. One can create a path, set the 
value of a path, read the value of a path, delete a path, and list the 
children of a path. It does a few more interesting things: (a) one 
can register a watcher on a path and get notified when the children 
of a path or the value of a path has changed; (b) a path can be 
created as ephemeral (as oppose to persistent), which means that 
if the creating client is gone, the path is automatically removed by 
the Zookeeper server; (c) zookeeper replicates its data to multiple 
servers, which makes the data highly reliable and available. 

Kafka uses Zookeeper for the following tasks: (1) detecting the 
addition and the removal of brokers and consumers, (2) triggering 
a rebalance process in each consumer when the above events 
happen, and (3) maintaining the consumption relationship and 
keeping track of the consumed offset of each partition. 
Specifically, when each broker or consumer starts up, it stores its 
information in a broker or consumer registry in Zookeeper. The 
broker registry contains the broker’s host name and port, and the 
set of topics and partitions stored on it. The consumer registry 
includes the consumer group to which a consumer belongs and the 
set of topics that it subscribes to. Each consumer group is 
associated with an ownership registry and an offset registry in 
Zookeeper. The ownership registry has one path for every 
subscribed partition and the path value is the id of the consumer 
currently consuming from this partition (we use the terminology 
that the consumer owns this partition). The offset registry stores 
for each subscribed partition, the offset of the last consumed 
message in the partition.  

The paths created in Zookeeper are ephemeral for the broker 
registry, the consumer registry and the ownership registry, and 
persistent for the offset registry. If a broker fails, all partitions on 
it are automatically removed from the broker registry. The failure 
of a consumer causes it to lose its entry in the consumer registry 
and all partitions that it owns in the ownership registry. Each 
consumer registers a Zookeeper watcher on both the broker 
registry and the consumer registry, and will be notified whenever 
a change in the broker set or the consumer group occurs. 

During the initial startup of a consumer or when the consumer is 
notified about a broker/consumer change through the watcher, the 
consumer initiates a rebalance process to determine the new 

subset of partitions that it should consume from. The process is 
described in Algorithm 1. By reading the broker and the consumer 
registry from Zookeeper, the consumer first computes the set (PT) 
of partitions available for each subscribed topic T and the set (CT) 
of consumers subscribing to T. It then range-partitions PT into |CT| 
chunks and deterministically picks one chunk to own. For each 
partition the consumer picks, it writes itself as the new owner of 
the partition in the ownership registry. Finally, the consumer 
begins a thread to pull data from each owned partition, starting 
from the offset stored in the offset registry. As messages get 
pulled from a partition, the consumer periodically updates the 
latest consumed offset in the offset registry. 

When there are multiple consumers within a group, each of them 
will be notified of a broker or a consumer change. However, the 
notification may come at slightly different times at the consumers. 
So, it is possible that one consumer tries to take ownership of a 
partition still owned by another consumer. When this happens, the 
first consumer simply releases all the partitions that it currently 
owns, waits a bit and retries the rebalance process. In practice, the 
rebalance process often stabilizes after only a few retries. 

When a new consumer group is created, no offsets are available in 
the offset registry. In this case, the consumers will begin with 
either the smallest or the largest offset (depending on a 
configuration) available on each subscribed partition, using an 
API that we provide on the brokers. 

3.3 Delivery Guarantees 
In general, Kafka only guarantees at-least-once delivery. Exactly-
once delivery typically requires two-phase commits and is not 
necessary for our applications. Most of the time, a message is 
delivered exactly once to each consumer group. However, in the 
case when a consumer process crashes without a clean shutdown, 
the consumer process that takes over those partitions owned by 
the failed consumer may get some duplicate messages that are 
after the last offset successfully committed to zookeeper. If an 
application cares about duplicates, it must add its own de-
duplication logic, either using the offsets that we return to the 
consumer or some unique key within the message. This is usually 
a more cost-effective approach than using two-phase commits. 

Kafka guarantees that messages from a single partition are 
delivered to a consumer in order. However, there is no guarantee 
on the ordering of messages coming from different partitions. 

Algorithm 1: rebalance process for consumer Ci in group G 
For each topic T that Ci subscribes to { 
  remove partitions owned by Ci from the ownership registry  
  read the broker and the consumer registries from Zookeeper 
  compute PT = partitions available in all brokers under topic T 
  compute CT =  all consumers in G that subscribe to topic T     
  sort PT and CT 
  let j be the index position of Ci in CT and let N = |PT|/|CT| 
  assign partitions from j*N to (j+1)*N - 1 in PT to consumer Ci 
  for each assigned partition p { 
    set the owner of p to Ci in the ownership registry 
    let Op = the offset of partition p stored in the offset registry 
    invoke a thread to pull data in partition p from offset Op 
  } 
} 



To avoid log corruption, Kafka stores a CRC for each message in 
the log. If there is any I/O error on the broker, Kafka runs a 
recovery process to remove those messages with inconsistent 
CRCs. Having the CRC at the message level also allows us to 
check network errors after a message is produced or consumed. 

If a broker goes down, any message stored on it not yet consumed 
becomes unavailable. If the storage system on a broker is 
permanently damaged, any unconsumed message is lost forever. 
In the future, we plan to add built-in replication in Kafka to 
redundantly store each message on multiple brokers. 

4. Kafka Usage at LinkedIn 
In this section, we describe how we use Kafka at LinkedIn. Figure 
3 shows a simplified version of our deployment. We have one 
Kafka cluster co-located with each datacenter where our user-
facing services run. The frontend services generate various kinds 
of log data and publish it to the local Kafka brokers in batches. 
We rely on a hardware load-balancer to distribute the publish 
requests to the set of Kafka brokers evenly. The online consumers 
of Kafka run in services within the same datacenter. 

We also deploy a cluster of Kafka in a separate datacenter for 
offline analysis, located geographically close to our Hadoop 
cluster and other data warehouse infrastructure. This instance of 
Kafka runs a set of embedded consumers to pull data from the 
Kafka instances in the live datacenters. We then run data load jobs 
to pull data from this replica cluster of Kafka into Hadoop and our 
data warehouse, where we run various reporting jobs and 
analytical process on the data. We also use this Kafka cluster for 
prototyping and have the ability to run simple scripts against the 
raw event streams for ad hoc querying. Without too much tuning, 
the end-to-end latency for the complete pipeline is about 10 
seconds on average, good enough for our requirements. 

Currently, Kafka accumulates hundreds of gigabytes of data and 
close to a billion messages per day, which we expect will grow 
significantly as we finish converting legacy systems to take 
advantage of Kafka. More types of messages will be added in the 
future. The rebalance process is able to automatically redirect the 

consumption when the operation staffs start or stop brokers for 
software or hardware maintenance. 

Our tracking also includes an auditing system to verify that there 
is no data loss along the whole pipeline. To facilitate that, each 
message carries the timestamp and the server name when they are 
generated. We instrument each producer such that it periodically 
generates a monitoring event, which records the number of 
messages published by that producer for each topic within a fixed 
time window. The producer publishes the monitoring events to 
Kafka in a separate topic. The consumers can then count the 
number of messages that they have received from a given topic 
and validate those counts with the monitoring events to validate 
the correctness of data. 

Loading into the Hadoop cluster is accomplished by implementing 
a special Kafka input format that allows MapReduce jobs to 
directly read data from Kafka. A MapReduce job loads the raw 
data and then groups and compresses it for efficient processing in 
the future. The stateless broker and client-side storage of message 
offsets again come into play here, allowing the MapReduce task 
management (which allows tasks to fail and be restarted) to 
handle the data load in a natural way without duplicating or losing 
messages in the event of a task restart. Both data and offsets are 
stored in HDFS only on the successful completion of the job. 

We chose to use Avro [2] as our serialization protocol since it is 
efficient and supports schema evolution. For each message, we 
store the id of its Avro schema and the serialized bytes in the 
payload. This schema allows us to enforce a contract to ensure 
compatibility between data producers and consumers. We use a 
lightweight schema registry service to map the schema id to the 
actual schema. When a consumer gets a message, it looks up in 
the schema registry to retrieve the schema, which is used to 
decode the bytes into an object (this lookup need only be done 
once per schema, since the values are immutable). 

5. Experimental Results 
We conducted an experimental study, comparing the performance 
of Kafka with Apache ActiveMQ v5.4 [1], a popular open-source 
implementation of JMS, and RabbitMQ v2.4 [16], a message 
system known for its performance. We used ActiveMQ’s default 
persistent message store KahaDB. Although not presented here, 
we also tested an alternative AMQ message store and found its 
performance very similar to that of KahaDB. Whenever possible, 
we tried to use comparable settings in all systems.  
We ran our experiments on 2 Linux machines, each with 8 2GHz 
cores, 16GB of memory, 6 disks with RAID 10. The two 
machines are connected with a 1Gb network link. One of the 
machines was used as the broker and the other machine was used 
as the producer or the consumer. 
Producer Test: We configured the broker in all systems to 
asynchronously flush messages to its persistence store. For each 
system, we ran a single producer to publish a total of 10 million 
messages, each of 200 bytes. We configured the Kafka producer 
to send messages in batches of size 1 and 50. ActiveMQ and 
RabbitMQ don’t seem to have an easy way to batch messages and 
we assume that it used a batch size of 1. The results are shown in 
Figure 4. The x-axis represents the amount of data sent to the 
broker over time in MB, and the y-axis corresponds to the 
producer throughput in messages per second. On average, Kafka 
can publish messages at the rate of 50,000 and 400,000 messages 
per second for batch size of 1 and 50, respectively. These numbers 
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are orders of magnitude higher than that of ActiveMQ, and at least 
2 times higher than RabbitMQ. 
There are a few reasons why Kafka performed much better. First, 
the Kafka producer currently doesn’t wait for acknowledgements 
from the broker and sends messages as faster as the broker can 
handle. This significantly increased the throughput of the 
publisher. With a batch size of 50, a single Kafka producer almost 
saturated the 1Gb link between the producer and the broker. This 
is a valid optimization for the log aggregation case, as data must 
be sent asynchronously to avoid introducing any latency into the 
live serving of traffic. We note that without acknowledging the 
producer, there is no guarantee that every published message is 
actually received by the broker. For many types of log data, it is 
desirable to trade durability for throughput, as long as the number 
of dropped messages is relatively small. However, we do plan to 
address the durability issue for more critical data in the future. 
Second, Kafka has a more efficient storage format. On average, 
each message had an overhead of 9 bytes in Kafka, versus 144 
bytes in ActiveMQ. This means that ActiveMQ was using 70% 
more space than Kafka to store the same set of 10 million 
messages. One overhead in ActiveMQ came from the heavy 
message header, required by JMS. Another overhead was the cost 
of maintaining various indexing structures. We observed that one 
of the busiest threads in ActiveMQ spent most of its time 
accessing a B-Tree to maintain message metadata and state. 
Finally, batching greatly improved the throughput by amortizing 
the RPC overhead. In Kafka, a batch size of 50 messages 
improved the throughput by almost an order of magnitude.  
Consumer Test: In the second experiment, we tested the 
performance of the consumer. Again, for all systems, we used a 
single consumer to retrieve a total of 10 millions messages. We 
configured all systems so that each pull request should prefetch 
approximately the same amount data---up to 1000 messages or 
about 200KB. For both ActiveMQ and RabbitMQ, we set the 
consumer acknowledge mode to be automatic. Since all messages 
fit in memory, all systems were serving data from the page cache 
of the underlying file system or some in-memory buffers. The 
results are presented in Figure 5. 
On average, Kafka consumed 22,000 messages per second, more 
than 4 times that of ActiveMQ and RabbitMQ. We can think of 
several reasons. First, since Kafka has a more efficient storage 
format, fewer bytes were transferred from the broker to the 

consumer in Kafka. Second, the broker in both ActiveMQ and 
RabbitMQ had to maintain the delivery state of every message. 
We observed that one of the ActiveMQ threads was busy writing 
KahaDB pages to disks during this test. In contrast, there were no 
disk write activities on the Kafka broker. Finally, by using the 
sendfile API, Kafka reduces the transmission overhead. 
We close the section by noting that the purpose of the experiment 
is not to show that other messaging systems are inferior to Kafka. 
After all, both ActiveMQ and RabbitMQ have more features than 
Kafka. The main point is to illustrate the potential performance 
gain that can be achieved by a specialized system. 

6. Conclusion and Future Works 
We present a novel system called Kafka for processing huge 
volume of log data streams. Like a messaging system, Kafka 
employs a pull-based consumption model that allows an 
application to consume data at its own rate and rewind the 
consumption whenever needed. By focusing on log processing 
applications, Kafka achieves much higher throughput than 
conventional messaging systems. It also provides integrated 
distributed support and can scale out. We have been using Kafka 
successfully at LinkedIn for both offline and online applications. 

There are a number of directions that we’d like to pursue in the 
future. First, we plan to add built-in replication of messages across 
multiple brokers to allow durability and data availability 
guarantees even in the case of unrecoverable machine failures. 
We’d like to support both asynchronous and synchronous 
replication models to allow some tradeoff between producer 
latency and the strength of the guarantees provided. An 
application can choose the right level of redundancy based on its 
requirement on durability, availability and throughput. Second, we 
want to add some stream processing capability in Kafka. After 
retrieving messages from Kafka, real time applications often 
perform similar operations such as window-based counting and 
joining each message with records in a secondary store or with 
messages in another stream. At the lowest level this is supported 
by semantically partitioning messages on the join key during 
publishing so that all messages sent with a particular key go to the 
same partition and hence arrive at a single consumer process. This 
provides the foundation for processing distributed streams across 
a cluster of consumer machines. On top of this we feel a library of 
helpful stream utilities, such as different windowing functions or 
join techniques will be beneficial to this kind of applications. 

Figure 4. Producer Performance Figure 5. Consumer Performance 
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